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Abstract

The pseudospectral method is applied to the free vibration analysis of cylindrical helical springs. The displacements and

the rotations are approximated by the series expansions of Chebyshev polynomials and the governing equations are

collocated. The number of collocation points is chosen to be less than the number of the expansion terms to handle the

boundary condition. Numerical examples are provided for fixed–fixed, free–free, fixed–free and hinged–hinged boundary

conditions. The results show good agreement with those of the transfer matrix method and the dynamic stiffness method.

The formulation of the pseudospectral method is straightforward and shows an exponential rate of convergence with mesh

refinement.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Helical springs are widely used in many engineering applications. Because of their importance the free
vibration analysis of helical springs has been extensively investigated and new methods have been proposed
since Wittrick [1] derived a set of 12 linear coupled partial differential equations for a uniform helical spring
based on the Timoshenko beam theory.

The transfer matrix method is one of the most favored tools in the free vibration analysis of helical springs.
Pearson [2] extended Wittrick’s equations to include the effects of static loading and obtained numerical
solutions for buckling and free vibrations by the transfer matrix method. Nagaya et al. [3] obtained the
transfer matrix by combining the point transfer matrix and the field transfer matrix which was derived from
the solution of the fundamental equation of the curved beam theory. Yildirim [4] used the Cayley–Hamilton
theorem to solve the free vibration problem of helical springs by the transfer matrix method. Yildirim [5,6]
also conducted series of studies to compute the eigenvalues of helical springs of arbitrary shape. Becker et al.
[7] investigated the effect of static axial compression upon the natural frequencies of helical springs by the
transfer matrix method. Lee and Thompson [8] used the dynamic stiffness method to calculate the natural
frequencies of helical springs and compared the results with those of the transfer matrix and the finite element
method.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Another approach is the finite element method. Mottershead [9] developed finite elements for the solution of
the eigenvalue problem of helical springs. Xiong and Tabarrok [10] developed a finite element formulation for
the vibration analysis of spatially curved and twisted rods which took account the initial moments and shear
forces as well as initial deformations. Stander and Du Preez [11] investigated the reduced integration rules for
the finite element analysis of helical springs. In the present work, the pseudospectral method is applied to the
free vibration analysis of cylindrical helical springs.
2. The pseudospectral method

In the spectral methods it is assumed that u(x), the solution to the differential equation with homogeneous
boundary condition, can be approximated by a sum of K basis functions fk(x)

uðxÞ � uK ðxÞ ¼
XK

k¼1

akfkðxÞ. (1)

When this series is substituted into the differential equation

Lu ¼ f ðxÞ, (2)

where L is the operator of the equation, the residual function is defined by

<ðx; a1; a2; . . . ; aK Þ ¼ LuK � f . (3)

If the basis functions fk(x) individually satisfy the homogeneous boundary condition on u(x), so does their
sum. Since the residual function is identically 0 for the exact solution, it is important to find the series
coefficients ak in such a way that the residual function is made as small as possible. The pseudospectral and
different spectral methods differ mainly in their way of minimizing R(x; a1, a2,y, ak).

The pseudospectral method associates a grid of collocation points with each basis set. In the pseudospectral
method the coefficients ak are found by requiring the residual function to vanish at the collocation points

< xi; a1; a2; . . . ; aKð Þ ¼ 0 i ¼ 1; 2; . . . ;K . (4)

As the residual function is forced to vanish at the collocation points, it will be smaller and smaller in the
gaps between the collocation points so that uk(x) will converge to u(x) as K increases. Various methods such as
the basis recombination and the boundary bordering technique have been devised to deal with the
nonhomogeneous boundary conditions.

Chebyshev polynomials, Legendre polynomials and Fourier series are the typical basis functions of the
pseudospectral method. Since the basis functions can be differentiated analytically and since each spectral
coefficient ak is determined by all the grid point values of u(x), the pseudospectral method is considered to
possess high accuracy and exponential rate of convergence with grid refinement on smooth and regular
domains. The major drawbacks of the pseudospectral method are that it suffers heavier losses of accuracy and
efficiency on irregular domains than the lower-order algorithms and that it is more costly per degree of
freedom (dof) than the discretization methods because the pseudospectral method generates algebraic
equations with full matrices.

As the formulation is straightforward and powerful enough to produce approximate solutions close to exact
solutions, the pseudospectral method has been successfully applied to the problems of computational physics
and fluid mechanics [12]. Lee and Schultz applied the pseudospectral method to the eigenvalue problems of
Timoshenko beams and axisymmetric Mindlin plates [13]. Lee used the pseudospectral method to investigate
the free vibration of double-span Timoshenko beams, where basis functions are assumed for each section
separately and the continuity conditions at the intermediate support and the boundary conditions are
considered as the side constraints so that the number of dofs matches the number of the pseudospectral
expansion coefficients [14].
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3. Pseudospectral formulations for a helical spring

Fig. 1 describes the geometry of a typical helical spring. R, s and a are the centerline radius of the helix, the
distance along the helical spring and the pitch angle of the helix, respectively.

Assuming the centroid of the cross-section and the shear centerline to coincide and neglecting the warping
of the cross-section due to torsion, Yildirim [4,5] derived the equations of motion of a uniform cylindrical
helical spring for the free vibration as

dTt

ds
� wTn ¼ �o2rAUt, (5a)

dTn

ds
þ wTt � tTb ¼ �o2rAUn, (5b)

dTb

ds
þ tTn ¼ �o2rAUb, (5c)

dMt

ds
� wMn ¼ �o2rJOt, (5d)

dMn

ds
� Tb þ wMt � tMb ¼ �o2rInOn, (5e)

dMb

ds
þ Tn þ tMn ¼ �o2rIbOb (5f)

for harmonic motion at natural frequency o in radian/second. Ut, Un and Ub represent the displacements, and
Ot, On and Ob are the rotations. Subscripts t, n and b stand for the tangential direction, the normal direction
and the binormal direction, respectively. A, In, Ib and J are the cross sectional area, the second moments of
area with respect to the normal axis and to the binormal axis, and the torsional moment of inertia of the cross
Fig. 1. The geometry of a typical helical spring.
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section. w ¼ cos2a/R, t ¼ cosa sina/R and r are the curvature, the tortuosity of the helix and the density,
respectively.

Tt, Tn and Tb are the components of the internal forces in the t, n and b directions, and Mt, Mn and
Mb are the components of the internal moments in the t, n and b directions, respectively, which are defined
as [4,5]

Tt ¼ EA
dUt

ds
� wUn

� �
, (6a)

Tn ¼
GA

bn

dUn

ds
þ wUt � tUb � Ob

� �
, (6b)

Tb ¼
GA

bb

dUb

ds
þ tUn þ On

� �
, (6c)

Mt ¼ GJ
dOt

ds
� wOn

� �
, (6d)

Mn ¼ EIn

dOn

ds
þ wOt � tOb

� �
, (6e)

Mb ¼ EIb

dOb

ds
þ tOn

� �
. (6f)

Fig. 2 shows the components of internal forces and moments. E and G are Young’s modulus and the shear
modulus. bn and bb are the Timoshenko coefficients. The substitution of (6a)–(6f) into (5a)–(5f) yields the
following set of governing equations:

EA
d2Ut

ds2
� w2

GA

bn

Ut � w EAþ
GA

bn

� �
dUn

ds
þ wt

GA

bn

Ub þ w
GA

bn

Ob ¼ �o2rAUt, (7a)
Fig. 2. The components of internal forces and moments.
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w EAþ
GA

bn

� �
dUt

ds
þ

GA

bn

d2Un

ds2
� w2EAþ t2

GA

bb

� �
Un

� t
GA

bn

þ
GA

bb

� �
dUb

ds
� t

GA

bb

On �
GA

bn

dOb

ds
¼ �o2rAUn, ð7bÞ

wt
GA

bn

Ut þ t
GA

bn

þ
GA

bb

� �
dUn

ds
þ

GA

bb

d2Ub

ds2
� t2

GA

bn

Ub þ
GA

bb

dOn

ds
� t

GA

bn

Ob ¼ �o2rAUb, (7c)

GJ
d2Ot

ds2
� w2EInOt � w EIn þ GJð Þ

dOn

ds
þ wtEInOb ¼ �o2rJOt, (7d)

� t
GA

bb

Un �
GA

bb

dUb

ds
þ w EIn þ GJð Þ

dOt

ds
þ EIn

d2On

ds2

�
GA

bb

þ w2GJ þ t2EIb

� �
On � t EIn þ EIbð Þ

dOb

ds
¼ �o2rInOn, ð7eÞ

w
GA

bn

Ut þ
GA

bn

dUn

ds
� t

GA

bn

Ub þ wtEInOt þ t EIn þ EIbð Þ
dOn

ds

þ EIb

d2Ob

ds2
�

GA

bn

þ t2EIn

� �
Ob ¼ �o2rIbOb. ð7fÞ

Typical boundary conditions are represented by

Fixed : Ut ¼ 0; Un ¼ 0; Ub ¼ 0; Ot ¼ 0; On ¼ 0; Ob ¼ 0, (8a)

Hinged : Ut ¼ 0; Un ¼ 0; Ub ¼ 0; Mt ¼ 0; Mn ¼ 0; Mb ¼ 0, (8b)

Free : Tt ¼ 0; Tn ¼ 0; Tb ¼ 0; Mt ¼ 0; Mn ¼ 0; Mb ¼ 0. (8c)

When the range of the independent variable is given by (0pspS), where S ¼ 2pnR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2a
p

is the total
length of the spring and n is the number of turns of the helix, it is convenient to use the normalized variable

x ¼
2s� S

S
2 �1; 1½ �. (9)

The displacements and rotations are expressed as sums of Chebyshev polynomials. Lee and Schultz suggested
an efficient way to handle the boundary conditions by adopting a larger number of expansion terms than that
of the collocation points [13]. Ut, Un, Ub, Ot, On and Ob are approximated as series expansions as follows:

Ut xð Þ ¼
PKþ2
k¼1

akTk�1 xð Þ;

Un xð Þ ¼
PKþ2
k¼1

bkTk�1 xð Þ;

Ub xð Þ ¼
PKþ2
k¼1

ckTk�1 xð Þ;

Ot xð Þ ¼
PKþ2
k¼1

dkTk�1 xð Þ;

On xð Þ ¼
PKþ2
k¼1

ekTk�1 xð Þ;

Ob xð Þ ¼
PKþ2
k¼1

f kTk�1 xð Þ;

(10)
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where ak, bk, cn, dk, ek and fk are the expansion coefficients. K and Tk�1 are the number of collocation points
and the Chebyshev polynomial of the first kind of degree of k�1, respectively.

Expansions (10) are substituted into Eqs. (7a–f), and are collocated at the Gauss-Lobatto collocation points

xi ¼ � cos
p 2i � 1ð Þ

2K
i ¼ 1; 2; . . . ;Kð Þ (11)

to yield the collocated governing equations as given in Appendix A.
The collocated governing equations (A1)–(A6) can be rearranged in the matrix form

H½ � df g þ H�½ � d�
� �

¼ o2 F½ � df g þ F�½ � d�
� �� �

, (12)

where the vectors in Eq. (12) are defined as

df g ¼ a1a2 � � � aK b1b2 � � � bK c1c2 � � � cK d1d2 � � � dK e1e2 � � � eK f 1f 2 � � � f K

� �T
,

d�
� �

¼ aKþ1aKþ2bKþ1bKþ2cKþ1cKþ2dKþ1dKþ2eKþ1eKþ2f Kþ1f Kþ2

� �T
. ð13Þ

[H] and [F] are matrices of order 6K, and the size of matrices [H*] and [F*] is 6K� 12. The total number of
equations in (12) is 6K whereas the total number of unknowns is 6(K+2). The remaining twelve equations are
obtained from the boundary condition. The boundary conditions (8a–c) at xb ¼71 are expressed by the series
expansions (10) and are given in Appendix B.

The formation of the boundary condition set can be accomplished by picking one set of condition up from
Eqs. (B1)–(B3) at xb ¼ �1 and another at xb ¼ 1. The fixed–fixed boundary condition set, for example,
consists of the following 12 equations:

XKþ2
k¼1

akTk�1 �1ð Þ ¼ 0;
XKþ2
k¼1

bkTk�1 �1ð Þ ¼ 0;
XKþ2
k¼1

ckTk�1 �1ð Þ ¼ 0,

XKþ2
k¼1

dkTk�1 �1ð Þ ¼ 0;
XKþ2
k¼1

ekTk�1 �1ð Þ ¼ 0;
XKþ2
k¼1

f kTk�1 �1ð Þ ¼ 0,

XKþ2
k¼1

akTk�1 1ð Þ ¼ 0;
XKþ2
k¼1

bkTk�1 1ð Þ ¼ 0;
XKþ2
k¼1

ckTk�1 1ð Þ ¼ 0,

XKþ2
k¼1

dkTk�1 1ð Þ ¼ 0;
XKþ2
k¼1

ekTk�1 1ð Þ ¼ 0;
XKþ2
k¼1

f kTk�1 1ð Þ ¼ 0. ð14Þ

The boundary condition set can be rearranged in the matrix form

U½ � df g þ V½ � d�
� �

¼ 0f g, (15)

where {0} is a zero vector. The size of matrix [U] is 12� 6K, and [V] is a matrix of order 12. Since {d*} in Eq.
(15) can be expressed as

d�
� �

¼ � V½ ��1 U½ � df g, (16)

Eq. (12) can be reformulated as

H½ � � H�½ � V½ ��1 U½ �
� �

df g ¼ o2 F½ � � F�½ � V½ ��1 U½ �
� �

df g. (17)

The solution of Eq. (17) yields the estimates for o and {d}. Once {d} is obtained the corresponding mode
shapes are computed by Eqs. (10) and (16). This procedure can be applied to any boundary condition set of
fixed–fixed, hinged–hinged, free–free, fixed–hinged, fixed–free, or hinged–free boundary condition.

4. Numerical examples and discussions

A convergence check of the natural frequencies of a helical spring for fixed–fixed boundary condition is
carried out and the results are given in Table 1. The spring has a wire radius of 0.5mm, a centerline radius of
5mm and a height of 36mm. The spring has 7.6 turns giving a helix pitch angle of 8.57441.
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Table 1

Convergence test of the natural frequencies in Hz of a cylindrical helical spring

Mode Present study Transfer

matrix

method [4]

Transfer

matrix

method [7]

Finite

element

method [9]K ¼ 10 K ¼ 20 K ¼ 30 K ¼ 40 K ¼ 50

1 467.7 463.9 443.3 393.5 393.5 393.5 393.5 396.0

2 536.2 527.6 460.7 396.1 396.1 395.9 396.1 397.0

3 917.4 907.3 481.4 462.9 462.9 462.8 462.8 469.0

4 1054.7 1032.8 530.3 525.7 525.7 525.5 525.7 532.0

5 1332.0 1315.8 904.7 863.8 863.8 864.0 863.8 887.0

6 1532.6 1499.2 935.5 877.0 877.0 876.8 876.9 900.0

7 1691.1 1591.9 1009.1 913.8 913.8 914.3 913.7 937.0

8 1961.5 1714.6 1046.8 1037.5 1037.5 1037.0 1037.5 1067.0

9 2008.8 1786.3 1323.9 1310.7 1310.7 1310.5 1310.6 1348.0

10 2285.1 1920.5 1452.4 1364.6 1364.6 1363.8 1364.6 1409.0

Fixed–fixed boundary condition, wire radius r ¼ 0.5mm, R ¼ 5mm, a ¼ 8.5744, n ¼ 7.6, bn ¼ 1.1, bb ¼ 1.1, r ¼ 7900 kg/m3,

E ¼ 2.06� 1011N/m2, Poisson’s ratio v ¼ 0.3.

Fig. 3. The distribution of the collocation points along a cylindrical helical spring for different numbers of collocation points K

(R ¼ 5mm, a ¼ 8.57441, n ¼ 7.6).
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The number of collocation points which determines the accuracy of the solution ranges from K ¼ 10 to
K ¼ 50 in the convergence check. Fig. 3 shows how the collocation points are distributed along the helical
spring for K ¼ 20, 30, 40, and 50. Table 1 shows the rapid convergence nature of the pseudospectral method
that requires less than 40 collocation points for the ten lowest natural frequencies to converge to four
significant figures. The converged frequencies are in fair agreement with those of Yildirim [4], Becker et al. [7]
and Mottershead [9]. Fig. 4 shows how the mode shapes of mode 1, mode 3, and mode 5 change as K increases.
It confirms that the mode shapes for K ¼ 40 are identical to those for K ¼ 50, which indicates that the
convergence is achieved. Fig. 4 shows that mode 1, mode 3 and mode 5 are predominantly longitudinal for
K ¼ 20. When the solution is converged mode 1 and mode 5 are predominantly transverse, and mode 3 is
predominantly longitudinal, respectively.

The natural frequencies computed by the pseudospectral method with K ¼ 50 for fixed–fixed, free–free,
fixed–free and hinged–hinged boundary conditions are given in Table 2, where the natural frequencies
computed by the dynamic stiffness method [8] are given for comparison. The helical spring in this example has
a wire radius of 6mm, a centerline radius of 65mm and a height of 320mm. The spring has 6 turns giving a
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Fig. 4. Mode shapes of a cylindrical helical spring for different numbers of collocation points K (top view and plan view, fixed–fixed

boundary condition, wire radius r ¼ 0.5mm, R ¼ 5mm, a ¼ 8.57441, n ¼ 7.6, bn ¼ 1.1, bb ¼ 1.1, r ¼ 7900 kg/m3, E ¼ 2.06� 1011N/m2,

Poisson’s ratio v ¼ 0.3).

J. Lee / Journal of Sound and Vibration 302 (2007) 185–196192
helix pitch angle of 7.441. The results of Table 2 show that they are in excellent agreement with those of the
dynamic stiffness method [8] for various boundary conditions. The easy implementation of the boundary
condition is one of the merits of the pseudospectral method. Any set of boundary condition can be merged
into the governing equations systematically by the procedure explained in Eqs. (14)–(17).

The number of collocation points K that is required for the convergence of the solution is of great concern.
The effects of the boundary condition, the number of turns of the helix and the centerline radius of the helix on
the convergence are investigated, and the results are given in Tables 3–5. Tables 3–5 show that larger number
of K is required for the convergence of the solution as the number of turns of the helix increases, while the
influence of the boundary condition and the helix radius is limited.

5. Conclusions

The pseudospectral method is applied to the free vibration analysis of cylindrical helical springs and
numerical examples are provided for fixed–fixed, free–free, fixed–free and hinged–hinged boundary
conditions. The displacements and the rotations of the spring are approximated by the series expansions of
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Table 2

Natural frequencies in Hz of a cylindrical helical spring

Boundary condition 1 2 3 4 5 6 7 8

Fixed– fixed

Present study 40.993 45.134 46.950 47.725 81.089 88.974 91.585 93.171

Dynamic stiffness [8] 40.994 45.135 46.951 47.726 81.091 88.976 91.586 93.173

Free– free

Present study 41.961 43.309 44.106 49.384 81.176 86.720 88.302 94.926

Dynamic stiffness [8] 41.962 43.309 44.106 49.384 81.178 86.721 88.303 94.927

Fixed– free

Present study 9.4718 9.4997 21.358 24.170 42.100 42.857 63.107 71.205

Dynamic stiffness [8] 9.4719 9.4998 21.359 24.170 42.101 42.857 63.109 71.205

Hinged– hinged

Present study 28.516 29.171 31.161 33.784 70.124 74.721 78.098 79.629

Dynamic stiffness [8] 28.516 29.171 31.162 33.784 70.125 74.721 78.099 79.630

Wire radius r ¼ 6mm, R ¼ 65mm, a ¼ 7.441, n ¼ 6, bn ¼ 1.1, bb ¼ 1.1, r ¼ 7800 kg/m3, E ¼ 2.09� 1011N/m2, Poisson’s ratio v ¼ 0.28,

K ¼ 50.

Table 3

Number of collocation points K required for the convergence of lowest eight natural frequencies to five figures for different boundary

conditions

Boundary condition Fixed–fixed Free–free Fixed–free Hinged–hinged

K 34 31 32 32

Wire radius r ¼ 6mm, R ¼ 65mm, a ¼ 7.441, n ¼ 6, bn ¼ 1.1, bb ¼ 1.1, r ¼ 7800 kg/m3, E ¼ 2.09� 1011N/m2, Poisson’s ratio v ¼ 0.28.

Table 4

Number of collocation points K required for the convergence of lowest eight natural frequencies to five figures for different numbers of

turns of the helix n

n 3 6 12

K 20 34 53

Fixed–fixed boundary condition, wire radius r ¼ 6mm, R ¼ 65mm, a ¼ 7.441, bn ¼ 1.1, bb ¼ 1.1, r ¼ 7800kg/m3, E ¼ 2.09� 1011N/m2,

Poisson’s ratio v ¼ 0.28.

Table 5

Number of collocation points K required for the convergence of lowest eight natural frequencies to five figures for different radii of helix R

R 32.5mm 65mm 130mm

K 34 34 32

Fixed–fixed boundary condition, wire radius r ¼ 6mm, a ¼ 7.441, n ¼ 6, bn ¼ 1.1, bb ¼ 1.1, r ¼ 7800 kg/m3, E ¼ 2.09� 1011N/m2,

Poisson’s ratio v ¼ 0.28.

J. Lee / Journal of Sound and Vibration 302 (2007) 185–196 193
Chebyshev polynomials. To handle the boundary condition the number of collocation points is chosen to be
less than the number of the expansion terms. The boundary condition is considered as the side constraints, and
the set of algebraic equations is condensed so that the number of dofs of the problem matches the total
number of the expansion coefficients. The example problems demonstrate the rapid convergence nature of the
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pseudospectral method. The parameters that affect the convergence of the solution of the pseudo-
spectral method are investigated. It is found that the number of turns of the helix plays an important
role on the convergence of the solution. The formulation of the pseudospectral method is straightforward
and efficient for writing a code for computation. The results of present study show good agreement
with those of the transfer matrix method and the dynamic stiffness method. The pseudospectral method
will be applied to various problems such as the forced vibration analysis and multidimensional problems
in the future.
Appendix A. Collocated governing equations

XKþ2
k¼1

ak

4EA

S2
T 00k�1 xið Þ � w2

GA

bn

Tk�1 xið Þ

	 

�
XKþ2
k¼1

bk

2w
S

EAþ
GA

bn

� �
T 0k�1 xið Þ

þ
XKþ2
k¼1

ckwt
GA

bn

Tk�1 xið Þ þ
XKþ2
k¼1

f kw
GA

bn

Tk�1 xið Þ ¼ �o
2rA

XKþ2
k¼1

akTk�1 xið Þ, ðA:1Þ

XKþ2
k¼1

ak

2w
S

EAþ
GA

bn

� �
T 0k�1 xið Þ þ

XKþ2
k¼1

bk

4

S2

GA

bn

T 00k�1 xið Þ

	

� w2EAþ t2
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bb

� �
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þ
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bb
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�
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XKþ2
k¼1

f k

2

S
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T 0k�1 xið Þ ¼ �o
2rA

XKþ2
k¼1

bkTk�1 xið Þ, ðA:2Þ
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k¼1
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bn
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XKþ2
k¼1

bk
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S
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bn

þ
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þ
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S2
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bb
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XKþ2
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dk

4GJ

S2
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�
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þ
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�
XKþ2
k¼1

bkt
GA

bb

Tk�1 xið Þ �
XKþ2
k¼1

ck

2

S

GA

bb

T 0k�1 xið Þ þ
XKþ2
k¼1

dk

2w
S

EIn þ GJð ÞT 0k�1 xið Þ

þ
XKþ2
k¼1

ek

4

S2
EInT 00k�1 xið Þ �

GA

bb

þ w2GJ þ t2EIb

� �
Tk�1 xið Þ

	 


�
XKþ2
k¼1

f k

2t
S

EIn þ EIbð ÞT 0k�1 xið Þ ¼ �o
2rIn

XKþ2
k¼1

ekTk�1 xið Þ, ðA:5Þ
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XKþ2
k¼1

akw
GA

bn

Tk�1 xið Þ þ
XKþ2
k¼1

bk

2

S

GA

bn

T 0k�1 xið Þ �
XKþ2
k¼1

ckt
GA

bn

Tk�1 xið Þ

þ
XKþ2
k¼1

dktwEInTk�1 xið Þ þ
XKþ2
k¼1

ek

2t
S

EIn þ EIbð ÞT 0k�1 xið Þ

þ
XKþ2
k¼1

f k

4

S2
EIbT 00k�1 xið Þ �

GA

bn

þ t2EIn

� �
Tk�1 xið Þ

	 

¼ �o2rIb

XKþ2
k¼1

f kTk�1 xið Þ,

i ¼ 1; . . . ;Kð Þ ðA:6Þ

The notation 0 stands for the differentiations with respect to x.
Appendix B. Boundary conditions as series expansions at nb ¼71

Fixed :

PKþ2
k¼1

akTk�1 xbð Þ ¼ 0;
PKþ2
k¼1

bkTk�1 xbð Þ ¼ 0;
PKþ2
k¼1

ckTk�1 xbð Þ ¼ 0;

PKþ2
k¼1

dkTk�1 xbð Þ ¼ 0;
PKþ2
k¼1

ekTk�1 xbð Þ ¼ 0;
PKþ2
k¼1

f kTk�1 xbð Þ ¼ 0;

8>>>><
>>>>:

(B.1)

Hinged :

PKþ2
k¼1

akTk�1 xbð Þ ¼ 0;
PKþ2
k¼1

bkTk�1 xbð Þ ¼ 0;
PKþ2
k¼1

ckTk�1 xbð Þ ¼ 0;

PKþ2
k¼1

dk

2

S
T 0k�1 xbð Þ � ekwTk�1 xbð Þ

	 

¼ 0

PKþ2
k¼1

dkw� f k

� �
Tk�1 xbð Þ þ ek

2

S
T 0k�1 xbð Þ

	 

¼ 0;

PKþ2
k¼1

ektTk�1 xbð Þ þ f k

2

S
T 0k�1 xbð Þ

	 

¼ 0;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(B.2)

Free :

PKþ2
k¼1

ak

2

S
T 0k�1 xbð Þ � bkwTk�1 xbð Þ

	 

¼ 0;

PKþ2
k¼1

akw� ckt� f k

� �
Tk�1 xbð Þ þ bk

2

S
T 0k�1 xbð Þ

	 

¼ 0;

PKþ2
k¼1

bktþ ekð ÞTk�1 xbð Þ þ ck

2

S
T 0k�1 xbð Þ

	 

¼ 0;

PKþ2
k¼1

dk

2

S
T 0k�1 xbð Þ � ekwTk�1 xbð Þ

	 

¼ 0;

PKþ2
k¼1

dkw� f kt
� �

Tk�1 xbð Þ þ ek

2

S
T 0k�1 xbð Þ

	 

¼ 0;

PKþ2
k¼1

ektTk�1 xbð Þ þ f k

2

S
T 0k�1 xbð Þ

	 

¼ 0:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

(B.3)

The notation 0 stands for the differentiations with respect to x.
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